Измеримые функции - définition. Qu'est-ce que Измеримые функции
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Измеримые функции - définition

Измеримые функции; Измеряемая функция

Измеримые функции         
(в первоначальном понимании)

функции f (x), обладающие тем свойством, что для любого t множество Et точек х, для которых f (x) ≤ t, измеримо по Лебегу (см. Мера множества). Это определение И. ф. принадлежит французскому математику А. Лебегу. Сумма, разность, произведение и частное двух И. ф., а также предел последовательности И. ф. снова являются И. ф. Таким образом, основные операции алгебры и анализа не выводят за пределы совокупности И. ф. Русские и советские математики внесли большой вклад в изучение И. ф. (Д. Ф. Егоров, Н. Н. Лузин и их ученики). Лузин доказал, что функция измерима в том и только том случае, если она может быть сделана непрерывной после изменения её значений на множестве сколь угодно малой меры. Это так называемое С-свойство И. ф.

В абстрактной теории меры функция f (x) называется И. ф. по отношению к какой-либо мере μ, если множество Et входит в область определения меры μ. В современной теории вероятностей И. ф. выступают под названием случайных величин (см. Вероятностей теория).

Измеримая функция         
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
сужение         
СУЖ'ЕНИЕ, сужения, мн. нет, ср. Действие и состояние по гл. сузить
-суживать
2 и сузиться
-суживаться
2. Сужение пищевода.

Wikipédia

Измеримая функция

Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.

Qu'est-ce que Измер<font color="red">и</font>мые ф<font color="red">у</font>нкции - définition